(8x^2+24x)=(-4x^2+15)

Simple and best practice solution for (8x^2+24x)=(-4x^2+15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x^2+24x)=(-4x^2+15) equation:



(8x^2+24x)=(-4x^2+15)
We move all terms to the left:
(8x^2+24x)-((-4x^2+15))=0
We get rid of parentheses
-((-4x^2+15))+8x^2+24x=0
We calculate terms in parentheses: -((-4x^2+15)), so:
(-4x^2+15)
We get rid of parentheses
-4x^2+15
Back to the equation:
-(-4x^2+15)
We add all the numbers together, and all the variables
8x^2-(-4x^2+15)+24x=0
We get rid of parentheses
8x^2+4x^2+24x-15=0
We add all the numbers together, and all the variables
12x^2+24x-15=0
a = 12; b = 24; c = -15;
Δ = b2-4ac
Δ = 242-4·12·(-15)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1296}=36$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-36}{2*12}=\frac{-60}{24} =-2+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+36}{2*12}=\frac{12}{24} =1/2 $

See similar equations:

| X+19+x+17=20 | | z+4/9=11/3 | | 0=k-3+7 | | 2x+1=0,2x-1=0 | | 9+2y=-21 | | -41+26t=2t+20t+19 | | 15^2+17v+2=0 | | 64+x=17 | | 0.3x=4.35 | | 0.7x=4.35 | | 1+5n+2n=-6 | | 32=11-3x | | -6=15+3x | | 7n+14=1 | | −25x^2+30x−9=0 | | −25x2+30x−9=0 | | 24=4x-3+3 | | -z/8+17=16 | | 4x^2=16=0 | | 9+b=-7 | | (5∙5)n=5. | | 5n=-n-30 | | f+46=-21 | | 5^3x-1=700 | | 3=3-8p-5p | | 18-2/3(x)=6 | | 4(x+4)=2(x+15) | | -4(x)=11/5 | | 10-2(3-2x)=8 | | 2(6x-9)=-102 | | -24=2x-16 | | -8r-4r=-24 |

Equations solver categories